Publications
![Ic4c03873 ic4c03873](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/ic4c03873_0014.webp?itok=WJtvMpkd)
Vanadium Substitution Dictates H Atom Uptake at Lindqvist-type Polyoxotungstates
Dominic Shiels, Zhou Lu, Magda Pascual-Borràs, Nathalia Cajiao, Thompson V. Marinho, William W. Brennessel, Michael L. Neidig, R. John Errington, Ellen M. Matson
Inorg. Chem., 2024, 63, 23304–23316
DOI: 10.1021/acs.inorgchem.4c03873
![Images medium ic4c03349 images medium ic4c03349](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/images_medium_ic4c03349_0009_0.gif?itok=2YUi_lTE)
Activation and Functionalization of the Uranyl Ion by Electrochemical Reduction
Riddhi R. Golwankar, Małgorzata Z. Makoś, Nathalia Cajiao, Michael L. Neidig, Allen G. Oliver, Cynthia S. Day, Victor W. Day, Vassiliki-Alexandra Glezakou, James D. Blakemore#
Inorg. Chem., 2024, 63, 24542–24553
DOI: 10.1021/acs.inorgchem.4c03349
![Image 2024 06 18 image 2024 06 18](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-06-18_112405300.png?itok=BUl4abLX)
Effective Alkyl-Alkyl Cross-Coupling with an Iron-Xantphos Catalyst: Mechanistic and Structural Insights
Magali Gimeno, Maria Camila Aguilera, Valerie Fleischauer,William Brennessel, and Michael Neidig
Angew. Chem. Int. Ed. 2024, e202413566
![Image 2024 06 18 image 2024 06 18](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-06-18_112405300.png?itok=BUl4abLX)
Unusual S = 1 Four-Coordinate Fe(IV) Complexes Supported by Bisamide Ligands: Syntheses, Characterization, and Electronic Structures
Zhang B, Joyce JP, Wolford N, Brennessel WW, DeBeer S, Neidig M
Angew. Chem. Int. Ed., 2024, e202405113
![Image 2024 06 18 image 2024 06 18](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-06-18_113002669.png?itok=RMFkgCZb)
Ni(2,2':6',2''-terpyridine)2: a high-spin octahedral formal Ni(0) complex
Cabrera-Lobera N, Del Horno E, Quirós MT, Buñuel E, Gimeno M, Brennessel WW, Neidig ML, Priego JL, Cárdenas DJ
Dalton Trans., 2024, 53, 8550-8554
DOI: 10.1039/d3dt04247b
![Image 2024 07 03 image 2024 07 03](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-07-03_143339354.png?itok=tqVirucN)
Mechanistic investigations of the Fe(II) mediated synthesis of squaraines
Liu, Y., Coles, N. T., Cajiao, N., Taylor, L. J.., Davies, E. S.; Barbour, A., Morgan, P., Butler, K.; Pointer-Gleadhill, B., Argent, S., McMaster, J., Neidig, M. L., Robinson, D., Kays, D. L.
Chem. Sci., 2024, 15, 9599-9611
DOI: 10.1039/d4sc01286k
![Image 2024 06 18 image 2024 06 18](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-06-18_111616403.png?itok=V73TXA8S)
Academia or Industry: Lessons on Choosing Career Paths─There May Be More Than One Fork in the Road Ahead
Blackmond DG, Emmert M, Huryn DM, Neidig ML, Schaub T, Topczewski JJ, Bravo-Altamirano K, Buchan Z, Cabrera PJ
Org. Lett., 2024, 26, 14, 2682–2685
![Image 2024 06 18 image 2024 06 18](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-06-18_110652258.png?itok=_sbqyQbn)
Iron-catalyzed stereoselective C–H alkylation for simultaneous construction of C–N axial and C-central chirality
Zi-Jing Zhang, Nicolas Jacob, Shilpa Bhatia, Philipp Boos, Xinran Chen, Joshua C. DeMuth, Antonis M. Messinis, Becky Bongsuiru Jei, João C. A. Oliveira, Aleksa Radović, Michael L. Neidig, Joanna Wencel-Delord & Lutz Ackermann
Nature Communications, 2024, volume 15, 3503
![Oc4c00210 oc4c00210](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/oc4c00210_0006_3.webp?itok=yh72HaPS)
Caught in the Act of Substitution: Interadsorbate Effects on an Atomically Precise Fe/Co/Se Nanocluster
Kephart JA, Zhou DY, Sandwisch J, Cajiao N, Krajewski SM, Malinowski P, Chu JH, Neidig ML, Kaminsky W, Velian A
ACS Cent. Sci. 2024
DOI: 10.1021/acscentsci.4c00210
![Image 2024 07 03 image 2024 07 03](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/image_2024-07-03_144311147.png?itok=x3Quy7H6)
Divergent Fe-Mediated C–H Activation Paths Driven by Alkali Cations
Vincent Wowk, Alexis K. Bauer, Aleksa Radovic, Lise-Marie Chamoreau, Michael L. Neidig, and Guillaume Lefèvre
JACS Au, 2024, 4, 2, 512–524
DOI: 10.1021/jacsau.3c00649
![nature comm](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/nature_communications_logo.svg.png?itok=PdLjbwfT)
Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone
Donggeon Nam, John-Paul Bacik, Rahul L. Khade, Maria Camila Aguilera, Yang Wei, Juan D. Villada, Michael L. Neidig, Yong Zhang, Nozomi Ando & Rudi Fasan
Nature Communications, 2023, 14, 7985
DOI: 10.1038/s41467-023-43559-7
![Palladium and iron cocatalyzed aerobic alkene aminoboration palladium and iron cocatalyzed aerobic alkene aminoboration](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/palladium_and_iron_cocatalyzed_aerobic_alkene_aminoboration_1.jpg?itok=NupJB8Em)
Palladium and Iron Cocatalyzed Aerobic Alkene Aminoboration
Gay, B. L., Wang, Y., Bhatt, S., Tarasewicz, A., Cooke, D. J., Milem, E. G., Zhang, B., Gary, J. B., Neidig, M. L., & Hull, K. L.
J. Am. Chem. Soc. 2023, 145, 18939–18947.
DOI: 10.1021/jacs.3c05790
![Mechanistic studies of iron pybox catalyzed olefin amino oxygenation with functionalized hydroxylamines mechanistic studies of iron pybox catalyzed olefin amino oxygenation with functionalized hydroxylamines](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/mechanistic_studies_of_iron-pybox-catalyzed_olefin_amino-oxygenation_with_functionalized_hydroxylamines_1.jpg?itok=hvBSVauN)
Mechanistic Studies of Iron-PyBOX-Catalyzed Olefin Amino-Oxygenation with Functionalized Hydroxylamines
Radović, A.; Wolford, N. J.; Li, W.; Brennessel, W. W.; Xu, H.; Neidig, M. L.
Organometallics. 2023, 42, 1810–1817.
![Insight into radical initiation solvent effects and biphenyl production in iron bisphosphine cross couplings insight into radical initiation solvent effects and biphenyl production in iron bisphosphine cross couplings](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/insight_into_radical_initiation_solvent_effects_and_biphenyl_production_in_iron-bisphosphine_cross-couplings_1.jpg?itok=jdT-v4hS)
Insight into Radical Initiation, Solvent Effects, and Biphenyl Production in Iron–Bisphosphine Cross-Couplings
Aguilera, M. C.; Gogoi, A. R.; Lee, W.; Liu, L.; Brennessel, W. W.; Gutierrez, O.; Neidig, M. L.
ACS Catal. 2023, 13, 8987–8996.
![Thermally stable redox noninnocent bathocuproine iron complex for cycloaddition reactions thermally stable redox noninnocent bathocuproine iron complex for cycloaddition reactions](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/thermally_stable_redox_noninnocent_bathocuproine-iron_complex_for_cycloaddition_reactions_1.jpg?itok=Cvx8Om7Z)
Thermally Stable Redox Noninnocent Bathocuproine-Iron Complex for Cycloaddition Reactions
Féo, M.; Bakas, N. J.; Radović, A.; Parisot, W.; Clisson, A.; Chamoreau, L.; Mansour, Ratovelomanana-Vidal, V.,;Neidig, M. L.; Lefèvre, G.
ACS Catal. 2023, 13, 4882–4893.
![The molecular level effect of alkoxide additives in iron catalyzed kumada cross coupling with simple ferric salts 3 the molecular level effect of alkoxide additives in iron catalyzed kumada cross coupling with simple ferric salts 3](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/the_molecular-level_effect_of_alkoxide_additives_in_iron-catalyzed_kumada_cross-coupling_with_simple_ferric_salts_3_1.jpg?itok=GMWAjaIm)
The molecular-level effect of alkoxide additives in iron-catalyzed Kumada cross-coupling with simple ferric salts
Bakas, N. J.; Chourreu P.; Gayon, E.; Lefèvre, G.; Neidig, M. L.
Chem. Commun. 2023, 59, 1317-1320
DOI: 10.1039/D2CC06257G
![Challenges and opportunities of fe based core shell catalysts for fischer tropsch synthesis challenges and opportunities of fe based core shell catalysts for fischer tropsch synthesis](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/challenges_and_opportunities_of_fe-based_core-shell_catalysts_for_fischer-tropsch_synthesis.jpg?itok=tr123lNw)
Challenges and Opportunities of Fe-based Core-Shell Catalysts for Fischer-Tropsch Synthesis
Agwara, J. N.; Bakas, N. J.; Neidig, M. L.; & Porosoff, M. D.
ChemCatChem 2022, 14, e202200289.
![Real homoleptic uranium bisacyl real homoleptic uranium bisacyl](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/real_homoleptic_uranium_bisacyl_1.jpg?itok=PkhMj_bE)
Homoleptic Uranium–Bis(acyl)phosphide Complexes
Carpenter, S. H.; Wolford, N. J.; Billow, B. S.; Fetrow, T. V.; Cajiao, N.; Radović, A.; Janicke, M. T.; Neidig, M. L.; & Tondreau, A. M.
Inorg. Chem. 2022, 61, 12508–12517.
![Anion induced disproportionation of thiii complexes to form thii and thiv products anion induced disproportionation of thiii complexes to form thii and thiv products](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/anion-induced_disproportionation_of_thiii_complexes_to_form_thii_and_thiv_products_1.jpg?itok=b8W6cf2S)
Anion-induced disproportionation of Th(III) complexes to form Th(II) and Th(IV) products
Wedal, J. C.; Cajiao, N.; Neidig, M. L.; & Evans, W. J.
Chem. Commun. 2022, 58, 5289-5291.
DOI: 10.1039/D2CC01272C
![A tmeda iron adduct reaction manifold in iron catalyzed csp2csp3 cross coupling reactions a tmeda iron adduct reaction manifold in iron catalyzed csp2csp3 cross coupling reactions](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/a_tmeda-iron_adduct_reaction_manifold_in_iron-catalyzed_csp2csp3_cross-coupling_reactions_1.jpg?itok=IzQjjGz_)
A TMEDA–Iron Adduct Reaction Manifold in Iron-Catalyzed C(sp2)−C(sp3) Cross-Coupling Reactions
Bakas, N. J.; Sears, J. D.; Brennessel, W. W.; Neidig M. L.
Angew. Chem. Int. Ed. 2022, 61, e202114986
![Comprehensive organometallic chemistry iv 1 comprehensive organometallic chemistry iv 1](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/comprehensive_organometallic_chemistry_iv_1_1.jpg?itok=pcQcfVQf)
Recent Advances in Synthesis, Characterization and Reactivities of Iron-Alkyl and Iron-Aryl Complexes
Zhang, B.; Aguilera, M.C.; Cajiao, N.; Neidig, M.L.
Comprehensive Organometallic Chemistry IV: Volume 1-15. 2022, 185–209
![Comprehensive organometallic chemistry iv 1 comprehensive organometallic chemistry iv 1](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/comprehensive_organometallic_chemistry_iv_1_1.jpg?itok=pcQcfVQf)
Characterization Methods for Paramagnetic Organometallic Complexes
Radović, A.; Bhatia, S.; Neidig, M.L.
Comprehensive Organometallic Chemistry IV: Volume 1-15. 2022, 135–175
![Intermediates and mechanism in iron catalyzed c h methylation with trimethylaluminum intermediates and mechanism in iron catalyzed c h methylation with trimethylaluminum](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/intermediates_and_mechanism_in_iron-catalyzed_c-h_methylation_with_trimethylaluminum_1.jpg?itok=WlqCwUmJ)
Intermediates and mechanism in iron-catalyzed C–H methylation with trimethylaluminum
Bathia, S.; DeMuth, J.C.; Neidig M. L.
Chem. Commun. 2021, 57, 12784-12787
DOI: 10.1039/D1CC05607G
![Nature communications nature communications](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/nature-communications.jpg?itok=ws35EMtA)
Creation of an unexpected plane of enhanced covalency in cerium(III) and berkelium(III) terpyridyl complexes
Gaiser, A. N.; Celis-Barros, C.; White, F. D.; Beltrán-Leiva, M. J.; Sperling, J.; Salpage, S. R.; Poe, T. N.; Martinez, D. G.; Jian, T., Wolford, N. J.; Neidig, M. L., & Albrecht‐Schönzart, T. E.; et al.
Nat Commun. 2021, 12, 7230
![Air stable iron based precatalysts for suzuki miyaura cross coupling reactions between alkyl halides and aryl boronic esters air stable iron based precatalysts for suzuki miyaura cross coupling reactions between alkyl halides and aryl boronic esters](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/air-stable_iron-based_precatalysts_for_suzuki-miyaura_cross-coupling_reactions_between_alkyl_halides_and_aryl_boronic_esters_1.jpg?itok=0hvOxpu5)
Air-Stable Iron-Based Precatalysts for Suzuki–Miyaura Cross-Coupling Reactions between Alkyl Halides and Aryl Boronic Esters
Wong, A. K. K.; Zhang, B.; Li, B.; Neidig, M. L.; & Byers, J. A.
Org. Process Res. Dev. 2021, 25, 2461–2472
![General method for iron catalyzed multicomponent radical cascades cross couplings general method for iron catalyzed multicomponent radical cascades cross couplings](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/general_method_for_iron-catalyzed_multicomponent_radical_cascades-cross-couplings_1.jpg?itok=Xc4gxiqs)
General method for iron-catalyzed multicomponent radical cascades–cross-couplings
Liu, L.; Aguilera, M. C.; Lee, W.; Youshaw, C. R.; Neidig, M. L.; Gutierrez, O.
Science 2021, 374, 432–439
![Nhc effects on reduction dynamics in iron catalyzed organic transformations nhc effects on reduction dynamics in iron catalyzed organic transformations](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/nhc_effects_on_reduction_dynamics_in_iron-catalyzed_organic_transformations_1.jpg?itok=s8YuOWAW)
NHC Effects on Reduction Dynamics in Iron-Catalyzed Organic Transformations
Wolford, N. J.; Muñoz, S. B.; Neate, P. G. N.; Brennessel, W. W.; Neidig, M. L.
Chem. Eur. J. 2021, 27, 13651–13658
![2fe 2s cluster supported by redox active o phenylenediamide ligands and its application toward dinitrogen reduction 2fe 2s cluster supported by redox active o phenylenediamide ligands and its application toward dinitrogen reduction](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/2fe-2s_cluster_supported_by_redox-active_o-phenylenediamide_ligands_and_its_application_toward_dinitrogen_reduction_1.jpg?itok=lL97J9hp)
Cluster Supported by Redox-Active o-Phenylenediamide Ligands and Its Application toward Dinitrogen Reduction
Liang, Q.; DeMuth, J.; Radović, A.; Wolford, N. J.; Neidig, M. L.; & Song, D.
Inorg. Chem. 2021, 60, 13811–13820
![Chemcatalysis chemcatalysis](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chemcatalysis_1.jpg?itok=ESYczhUS)
An anionic iron-hydride superstar for the isomerization of terminal alkenes
Aguilera, M.C.; Neidig, M.L.
Chem Catal. 2021, 1, 488–489
![Dilithium amides as a modular bis anionic ligand platform for iron catalyzed cross coupling dilithium amides as a modular bis anionic ligand platform for iron catalyzed cross coupling](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/dilithium_amides_as_a_modular_bis-anionic_ligand_platform_for_iron-catalyzed_cross-coupling_1.jpg?itok=5M_VEdWO)
Dilithium Amides as a Modular Bis-Anionic Ligand Platform for Iron-Catalyzed Cross-Coupling
Neate, P. G. N.; Zhang, B.; Conforti, J.; Brennessel, W. W.; Neidig, M. L.
Org. Lett. 2021, 23, 5958–5963
![Comprehensive coordination chemistry iii comprehensive coordination chemistry iii](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/comprehensive_coordination_chemistry_iii_1.jpg?itok=UpYUwC1b)
Metal-carbon bonds of iron and manganese
Neidig, M.L., Bakas, N.J., Neate, P.G.N., Sears, J.D.
Comprehensive Coordination Chemistry III. 2021, 82–122
![Comprehensive coordination chemistry iii comprehensive coordination chemistry iii](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/comprehensive_coordination_chemistry_iii_1.jpg?itok=UpYUwC1b)
C-H activation/functionalization with earth abundant 3d transition metals
Neidig, M.L., DeMuth, J.C., Zhang, B.
Comprehensive Coordination Chemistry III. 2021, 260–310
![Functionalisation with allyl electrophiles functionalisation with allyl electrophiles](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/functionalisation_with_allyl_electrophiles_1.jpg?itok=eDHt0m_R)
Experimental and computational studies of the mechanism of iron-catalysed C-H activation/functionalisation with allyl electrophiles
DeMuth, J. C.; Song, Z.; Carpenter, S. H.; Boddie, T. E.; Radović, A.; Baker, T. M.; Gutierrez, O.; Neidig, M. L.
Chem. Sci. 2021, 12, 9398–9407
DOI: 10.1039/D1SC01661J
![Near infrared c term mcd spectroscopy of octahedral uraniumv complexes near infrared c term mcd spectroscopy of octahedral uraniumv complexes](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/near-infrared_c-term_mcd_spectroscopy_of_octahedral_uraniumv_complexes.jpg?itok=q_7mgCoi)
Near-infrared C-term MCD spectroscopy of octahedral uranium(v) complexes
Curran, D. J.; Ganguly, G.; Heit, Y. N.; Wolford, N. J.; Minasian, S. G.; Löble, M. W.; Cary, S. K.; Kozimor, S. A.; Autschbach, J.; Neidig, M. L.
Dalton Trans. 2021, 50, 5483–5492
DOI: 10.1039/D1DT00513H
![Nature review chem nature review chem](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/nature_review_chem_1.jpg?itok=dfzVCRig)
Forged in iron
Neate, P. G. N.; Neidig, M. L.
Nat Rev Chem. 2021, 5, 223–224
![Chemsci chemsci](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chemsci.jpg?itok=Rt1vkndK)
Activation of ammonia and hydrazine by electron rich Fe(II) complexes supported by a dianionic pentadentate ligand platform through a common terminal Fe(III) amido intermediate
Nurdin, L.; Yang, Y.; Neate, P. G. N.; Piers, W. E.; Maron, L.; Neidig, M. L.; Lin, J.; Gelfand, B. S.
Chem. Sci. 2021,12, 2231-2241
DOI: 10.1039/D0SC06466A
![Homoleptic uranium bisacylphosphide complexe homoleptic uranium bisacylphosphide complexe](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/homoleptic_uranium-bisacylphosphide_complexe_1.jpg?itok=oZQpMBmD)
C-Term Magnetic Circular Dichroism (MCD) Spectroscopy in Paramagnetic Transition Metal and f-Element Organometallic Chemistry
Wolford, N. J.; Radovic, A.; Neidig, M. L.
Dalton Trans. 2021, 50, 416–428
DOI: 10.1039/D0DT03730C
![Additive and counterion effects in iron catalyzed reactions relevant to c c bond formation additive and counterion effects in iron catalyzed reactions relevant to c c bond formation](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/additive_and_counterion_effects_in_iron-catalyzed_reactions_relevant_to_c-c_bond_formation_1.jpg?itok=HFaEoCIe)
Additive and Counterion Effects in Iron-Catalyzed Reactions Relevant to C–C Bond Formation
Bakas, N. J.; Neidig, M. L.
ACS Catal. 2021, 11, 8493–8503
![Catalysis with earth abundant elements catalysis with earth abundant elements](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/catalysis_with_earth-abundant_elements_1.jpg?itok=_7j3Boi0)
CHAPTER 7: Open Shell Iron Catalysis: Mechanistic Challenges, Approaches and Pitfalls
Neate, P.G.N.; Neidig, M.L.
RSC Catalysis Series. 2021, 231–245
![Ligand effects on electronic structure and bonding in uiii coordination complexes ligand effects on electronic structure and bonding in uiii coordination complexes](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/ligand_effects_on_electronic_structure_and_bonding_in_uiii_coordination_complexes.jpg?itok=hsWmPK4D)
Ligand Effects on Electronic Structure and Bonding in U(III) Coordination Complexes: A Combined MCD, EPR and Computational Study
Wolford, N. J.; Yu, X.; Bart, S. C.; Autschbach, J.; Neidig, M. L.
Dalton Trans. 2020, 49, 14401–14410
DOI: 10.1039/D0DT02929G
![Daltontrans daltontrans](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/daltontrans.jpg?itok=n8S7qWTc)
Syntheses and characterizations of iron complexes of bulky: O-phenylenediamide ligand
Liang, Q.; Lin, J.H.; Demuth, J.C.; Neidig, M.L.; Song, D.
Dalton Trans. 2020, 49, 12287-12297
DOI: 10.1039/D0DT02087G
![Tmeda in iron catalyzed hydromagnesiation formation of ironii alkyl species for controlled reduction to alkene stabilized iron0 tmeda in iron catalyzed hydromagnesiation formation of ironii alkyl species for controlled reduction to alkene stabilized iron0](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/tmeda_in_iron-catalyzed_hydromagnesiation_formation_of_ironii-alkyl_species_for_controlled_reduction_to_alkene-stabilized_iron0_1.jpg?itok=jCyr7o9m)
TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)
Neate, P. G. N.; Greenhalgh, M. D.; Brennessel, W. W.; Thomas, S. P.; Neidig, M. L.
Angew. Chem. Int. Ed. 2020, 59, 17070–17076
![The exceptional diversity of homoleptic uranium methyl complexes 2 the exceptional diversity of homoleptic uranium methyl complexes 2](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/the_exceptional_diversity_of_homoleptic_uranium-methyl_complexes_2_1.jpg?itok=61t1DVW4)
The Exceptional Diversity of Homoleptic Uranium–Methyl Complexes
Sears, J. D.; Sergentu, D.; Baker, T. M.; Brennessel, W. W.; Autschbach, J.; Neidig, M. L.
Angew. Chem. Int. Ed. 2020, 59, 13586–13590
![Identifying correlations in fischer tropsch synthesis and co2 hydrogenation over fe based zsm 5 catalysts identifying correlations in fischer tropsch synthesis and co2 hydrogenation over fe based zsm 5 catalysts](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/identifying_correlations_in_fischer-tropsch_synthesis_and_co2_hydrogenation_over_fe-based_zsm-5_catalysts.jpg?itok=5NBqfllG)
Identifying correlations in Fischer-Tropsch synthesis and CO2 hydrogenation over Fe-based ZSM-5 catalysts
Liu, R.; Ma, Z.; Sears, J. D.; Juneau, M.; Neidig, M. L.; Porosoff, M. D.
J. CO2 Util. 2020, 41, 101290
![Isolation and characterization of a homoleptic tetramethylcobaltiii distorted square planar complex isolation and characterization of a homoleptic tetramethylcobaltiii distorted square planar complex](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/isolation_and_characterization_of_a_homoleptic_tetramethylcobaltiii_distorted_square-planar_complex_1.jpg?itok=28AstQqS)
Isolation and Characterization of a Homoleptic Tetramethylcobalt(III) Distorted Square-Planar Complex
Carpenter, S.H.; Brennessel, W.W.; Neidig, M.L.
Organometallics 2019, 38, 3486–3489
![Insight into the electronic structure of formal lanthanideii complexes using magnetic circular dichroism spectroscopy insight into the electronic structure of formal lanthanideii complexes using magnetic circular dichroism spectroscopy](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/insight_into_the_electronic_structure_of_formal_lanthanideii_complexes_using_magnetic_circular_dichroism_spectroscopy_1.jpg?itok=DRsLkEsK)
Insight into the Electronic Structure of Formal Lanthanide(II) Complexes Using Magnetic Circular Dichroism Spectroscopy
Fleischauer, V. E.; Ganguly, G.; Woen, D. H.; Wolford, N. J.; Evans, W. J.; Autschbach, J.; Neidig, M. L.
Organometallics 2019, 38, 3124–3131
![Atom economical ni catalyzed diborylative cyclization of enynes preparation of unsymmetrical diboronates atom economical ni catalyzed diborylative cyclization of enynes preparation of unsymmetrical diboronates](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/atom-economical_ni-catalyzed_diborylative_cyclization_of_enynes_preparation_of_unsymmetrical_diboronates.jpeg?itok=M2L0xI9q)
Atom-Economical Ni-Catalyzed Diborylative Cyclization of Enynes: Preparation of Unsymmetrical Diboronates
Cabrera‐Lobera, N., Quirós, M. T., Brennessel, W. W., Neidig, M. L., Buñuel, E., & Cárdenas, D. J.
Org. Lett. 2019, 21, 6552–6556
![Identification and reactivity of cyclometalated ironii intermediates in triazole directed iron catalyzed c h activation identification and reactivity of cyclometalated ironii intermediates in triazole directed iron catalyzed c h activation](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/identification_and_reactivity_of_cyclometalated_ironii_intermediates_in_triazole-directed_iron-catalyzed_c-h_activation_1.jpg?itok=Qckx3dOH)
Identification and Reactivity of Cyclometalated Iron(II) Intermediates in Triazole-Directed Iron-Catalyzed C–H Activation
Boddie, T. E.; Carpenter, S. H.; Baker, T. M.; DeMuth, J. C.; Cera, G.; Brennessel, W. W.; Ackermann, L.; Neidig, M. L.
J. Am. Chem. Soc. 2019, 141, 12338–12345
DOI: 10.1021/jacs.9b05269
![Homoleptic aryl complexes of uranium iv 2 homoleptic aryl complexes of uranium iv 2](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/homoleptic_aryl_complexes_of_uranium_iv_2_1.jpg?itok=8hf8WvGj)
Homoleptic Aryl Complexes of Uranium (IV)
Wolford, N. J.; Sergentu, D.; Brennessel, W. W.; Autschbach, J.; Neidig, M. L.
Chem. Int. Ed. 2019, 58 (30), 10266–10270
![Mechanism of the bisiminopyridine iron catalyzed hydromagnesiation of styrene derivatives mechanism of the bisiminopyridine iron catalyzed hydromagnesiation of styrene derivatives](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/mechanism_of_the_bisiminopyridine-iron-catalyzed_hydromagnesiation_of_styrene_derivatives.jpeg?itok=hlO0I-9T)
Mechanism of the Bis(Imino)Pyridine-Iron-Catalyzed Hydromagnesiation of Styrene Derivatives
Neate, P. G. N.; Greenhalgh, M. D.; Brennessel, W. W.; Thomas, S. P.; Neidig, M. L.
J. Am. Chem. Soc. 2019, 141, 10099–10108
DOI: 10.1021/jacs.9b04869
![The effect of v hydrogen atoms on iron speciation in cross couplings with simple iron salts and alkyl grignard reagents the effect of v hydrogen atoms on iron speciation in cross couplings with simple iron salts and alkyl grignard reagents](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/the_effect_of_v-hydrogen_atoms_on_iron_speciation_in_cross-couplings_with_simple_iron_salts_and_alkyl_grignard_reagents_1.jpg?itok=I5QuQ3Ce)
The Effect of β‐Hydrogen Atoms on Iron Speciation in Cross‐Couplings with Simple Iron Salts and Alkyl Grignard Reagents
Sears, J. D.; Muñoz, S. B.; Daifuku, S. L.; Shaps, A. A.; Carpenter, S. H.; Brennessel, W. W.; Neidig, M. L.
Angew. Chem. Int. Ed. 2019, 58, 2769–2773
![Development and evolution of mechanistic understanding in iron catalyzed cross coupling development and evolution of mechanistic understanding in iron catalyzed cross coupling](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/development_and_evolution_of_mechanistic_understanding_in_iron-catalyzed_cross-coupling_1.jpg?itok=dYrJTq6R)
Development and Evolution of Mechanistic Understanding in Iron-Catalyzed Cross-Coupling
Neidig, M. L.; Carpenter, S. H.; Curran, D. J.; DeMuth, J. C.; Fleischauer, V. E.; Iannuzzi, T. E.; Neate, P. G. N.; Sears, J. D.; Wolford, N. J.
Acc. Chem. Res. 2019, 52, 140–150
![Synthesis and characterization of a sterically encumbered homoleptic tetraalkylironiii ferrate complex synthesis and characterization of a sterically encumbered homoleptic tetraalkylironiii ferrate complex](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/synthesis_and_characterization_of_a_sterically_encumbered_homoleptic_tetraalkylironiii_ferrate_complex_1.jpg?itok=gWKh8OI6)
Synthesis and Characterization of a Sterically Encumbered Homoleptic Tetraalkyliron(III) Ferrate Complex
Sears, J. D.; Muñoz, S. B.; Cuenca, M. C. A.; Brennessel, W. W.; Neidig, M. L.
Polyhedron 2019, 158, 91–96
![General method for iron catalyzed multicomponent radical cascades cross couplings general method for iron catalyzed multicomponent radical cascades cross couplings](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/general_method_for_iron-catalyzed_multicomponent_radical_cascades-cross-couplings_1.jpg?itok=Xc4gxiqs)
Terminal Coordination of Diatomic Boron Monofluoride to Iron
Drance, M. J.; Sears, J. D.; Mrse, A. M.; Moore, C. E.; Rheingold, A. L.; Neidig, M. L.; Figueroa, J. S.
Science 2019, 363, 1203–1205
![Acta cryst e acta cryst e](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/acta_cryst_e_1.jpg?itok=gHcgXJtT)
Crystal structure of bromidopentakis(tetrahydrofuran-κ O)magnesium bis[1,2-bis(diphenylphosphanyl)benzene-κ2P, P ′]cobaltate(-1) tetrahydrofuran disolvate
Girigiri, P.B.; Carpenter, S.H.; Brennessel, W.W.; Neidig, M.L.
Acta Crystallogr. E: Crystallogr. Commun. 2019, 75, 304–307
![Intermediates and mechanism in iron catalyzed cross coupling intermediates and mechanism in iron catalyzed cross coupling](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/intermediates_and_mechanism_in_iron-catalyzed_cross-coupling_1.jpg?itok=72fpTbLd)
Intermediates and Mechanism in Iron-Catalyzed Cross-Coupling
Sears, J. D.; Neate, P. G. N.; Neidig, M. L.
J. Am. Chem. Soc. 2018, 140 (38), 11872–11883
DOI: 10.1021/jacs.8b06893
![Combined effects of backbone and n substituents on structure bonding and reactivity of alkylated ironii nhcs combined effects of backbone and n substituents on structure bonding and reactivity of alkylated ironii nhcs](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/combined_effects_of_backbone_and_n-substituents_on_structure_bonding_and_reactivity_of_alkylated_ironii-nhcs_1.jpg?itok=GfgFfd5E)
Combined Effects of Backbone and N-Substituents on Structure, Bonding, and Reactivity of Alkylated Iron(II)-NHCs
Muñoz, S. B.; Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.
Organometallics 2018, 37, 3093–3101
![Backbone dehydrogenation in pyrrole based pincer ligands backbone dehydrogenation in pyrrole based pincer ligands](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/backbone_dehydrogenation_in_pyrrole-based_pincer_ligands.jpeg?itok=qAf7arCH)
Backbone Dehydrogenation in Pyrrole-Based Pincer Ligands
Krishnan, V. M.; Davis, I.; Baker, T. M.; Curran, D. J.; Arman, H. D.; Neidig, M. L.; Liu, A.; Tonzetich, Z. J.
Inorg. Chem. 2018, 57, 9544–9553
![A pseudotetrahedral uraniumv complex a pseudotetrahedral uraniumv complex](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/a_pseudotetrahedral_uraniumv_complex.jpeg?itok=cw4Djg-D)
A Pseudotetrahedral Uranium(V) Complex
Tondreau, A. M.; Duignan, T. J.; Stein, B. W.; Fleischauer, V. E.; Autschbach, J.; Batista, E. R.; Boncella, J. M.; Ferrier, M. G.; Kozimor, S. A.; Mocko, V.; Neidig, M. L.; Cary, S. K.; Yang, P.
Inorg. Chem. 2018, 57, 8106–8115
![The n methylpyrrolidone nmp effect in iron catalyzed cross coupling with simple ferric salts and memgbr the n methylpyrrolidone nmp effect in iron catalyzed cross coupling with simple ferric salts and memgbr](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/the_n-methylpyrrolidone_nmp_effect_in_iron-catalyzed_cross-coupling_with_simple_ferric_salts_and_memgbr_1.jpg?itok=jnndlUTn)
The N-Methylpyrrolidone (NMP) Effect in Iron‐Catalyzed Cross‐Coupling with Simple Ferric Salts and MeMgBr
Muñoz, S. B.; Daifuku, S. L.; Sears, J. D.; Baker, T. M.; Carpenter, S. H.; Brennessel, W. W.; Neidig, M. L.
Chem. Int. Ed. 2018, 57, 6496
![Nhc and nucleophile chelation effects on reactive ironii species in alkyl alkyl cross coupling nhc and nucleophile chelation effects on reactive ironii species in alkyl alkyl cross coupling](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/nhc_and_nucleophile_chelation_effects_on_reactive_ironii_species_in_alkyl-alkyl_cross-coupling_1.jpg?itok=V41grH43)
NHC and Nucleophile Chelation Effects on Reactive Iron(II) Species in Alkyl–Alkyl Cross-Coupling
Fleischauer, V. E.; Muñoz III, S. B.; Neate, P. G. N.; Brennessel, W. W.; Neidig, M. L.
Chem. Sci. 2018, 9, 1878–1891
DOI: 10.1039/C7SC04750A
![Multinuclear iron phenyl species in reactions of simple iron salts with phmgbr identification of fe4m ph6thf4 multinuclear iron phenyl species in reactions of simple iron salts with phmgbr identification of fe4m ph6thf4](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/multinuclear_iron-phenyl_species_in_reactions_of_simple_iron_salts_with_phmgbr_identification_of_fe4m-ph6thf4_1.jpg?itok=lB3pM2Nn)
Multinuclear Iron–Phenyl Species in Reactions of Simple Iron Salts with PhMgBr: Identification of Fe4(μ-Ph)6(THF)4
Carpenter, S. H.; Baker, T. M.; Muñoz, S. B.; Brennessel, W. W.; Neidig, M. L.
Chem. Sci. 2018, 9, 7931–7939
DOI: 10.1039/C8SC02915F
![Chemsci chemsci](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chemsci.jpg?itok=Rt1vkndK)
Nitric Oxide Activation Facilitated by Cooperative Multimetallic Electron Transfer within an Iron-Functionalized Polyoxovanadate–Alkoxide Cluster
Li, F.; Meyer, R. L.; Carpenter, S. H.; VanGelder, L. E.; Nichols, A. W.; Machan, C. W.; Neidig, M. L.; Matson, E.
Chem. Sci. 2018, 9, 6379–6389
DOI: 10.1039/C8SC00987B
![Acta cryst e acta cryst e](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/acta_cryst_e_1.jpg?itok=gHcgXJtT)
Crystal structures of two new six-coordinate iron(III) complexes with 1,2-bis(diphenylphosphane) ligands
McNeil, D. L., Beckford, D. J., Kneebone, J. L., Carpenter, S. H., Brennessel, W. W., & Neidig, M. L.
Acta Crystallogr. E: Crystallogr. Commun. 2018, 74, 803–807
![A physical inorganic approach for the elucidation of active iron species and mechanism in iron catalyzed cross coupling 2 a physical inorganic approach for the elucidation of active iron species and mechanism in iron catalyzed cross coupling 2](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/a_physical-inorganic_approach_for_the_elucidation_of_active_iron_species_and_mechanism_in_iron-catalyzed_cross-coupling_2_1.jpg?itok=4V2Ad4Kj)
A Physical-Inorganic Approach for the Elucidation of Active Iron Species and Mechanism in Iron-Catalyzed Cross-Coupling
Carpenter, S. H.; Neidig, M. L.
Isr. J. Chem. 2017, 57, 1106–1116
![Ironii complexes of a hemilabile sns amido ligandsynthesis characterization and reactivity ironii complexes of a hemilabile sns amido ligandsynthesis characterization and reactivity](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/ironii_complexes_of_a_hemilabile_sns_amido_ligandsynthesis_characterization_and_reactivity.jpeg?itok=3w_IOSH6)
Iron(II) Complexes of a Hemilabile SNS Amido Ligand: Synthesis, Characterization, and Reactivity
Das, U. K.; Daifuku, S. L.; Iannuzzi, T. E.; Gorelsky, S. I.; Korobkov, I.; Gabidullin, B.; Neidig, M. L.; Baker, R. T.
Inorg. Chem. 2017, 56, 13766–13776
![A combined probe molecule mossbauer nuclear resonance vibrational spectroscopy and density functional theory a combined probe molecule mossbauer nuclear resonance vibrational spectroscopy and density functional theory](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/a_combined_probe-molecule_mossbauer_nuclear_resonance_vibrational_spectroscopy_and_density_functional_theory_.jpeg?itok=dpuUSf8-)
A Combined Probe-Molecule, Mössbauer, Nuclear Resonance Vibrational Spectroscopy, and Density Functional Theory Approach for Evaluation of Potential Iron Active Sites in an Oxygen Reduction Reaction Catalyst
Kneebone, J. L.; Daifuku, S. L.; Kehl, J. A.; Wu, G.; Chung, H. T.; Hu, M. Y.; Alp, E. E.; More, K. L.; Zelenay, P.; Holby, E. F.; Neidig, M. L.
J. Phys. Chem. C. 2017, 121, 16283–16290
![Polyoxovanadate alkoxide clusters as a redox reservoir for iron polyoxovanadate alkoxide clusters as a redox reservoir for iron](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/polyoxovanadate-alkoxide_clusters_as_a_redox_reservoir_for_iron.jpeg?itok=UqxfFIpo)
Polyoxovanadate–Alkoxide Clusters as a Redox Reservoir for Iron
Li, F.; Carpenter, S. H.; Higgins, R. F.; Hitt, M. G.; Brennessel, W. W.; Ferrier, M. G.; Cary, S. K.; Lezama-Pacheco, J. S.; Wright, J. T.; Stein, B. W.; Shores, M. P.; Neidig, M. L.; Kozimor, S. A.; Matson, E. M.
Inorg. Chem. 2017, 56, 7065–7080
![Intermediates and reactivity in iron catalyzed cross couplings of alkynyl grignards with alkyl halides intermediates and reactivity in iron catalyzed cross couplings of alkynyl grignards with alkyl halides](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/intermediates_and_reactivity_in_iron-catalyzed_cross-couplings_of_alkynyl_grignards_with_alkyl_halides.jpeg?itok=-1c7g0k7)
Intermediates and Reactivity in Iron-Catalyzed Cross-Couplings of Alkynyl Grignards with Alkyl Halides
Kneebone, J. L.; Brennessel, W. W.; Neidig, M. L.
J. Am. Chem. Soc. 2017, 139, 6988–7003
DOI: 10.1021/jacs.7b02363
![Transition metal free formation of c e bonds transition metal free formation of c e bonds](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/transition-metal-free_formation_of_c-e_bonds_.jpeg?itok=oq3WTVEC)
Transition-Metal-Free Formation of C–E Bonds (E = C, N, O, S) and Formation of C–M Bonds (M = Mn, Mo) from N -Heterocyclic Carbene Mediated Fluoroalkene C–F Bond Activation
Leclerc, M. C.; Gabidullin, B. M.; Da Gama, J. G.; Daifuku, S. L.; Iannuzzi, T. E.; Neidig, M. L.; Baker, R. T.
Organometallics 2017, 36, 849–857
![Daltontrans daltontrans](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/daltontrans.jpg?itok=n8S7qWTc)
Magnetic Circular Dichroism and Density Functional Theory Studies of Electronic Structure and Bonding in Cobalt(II)–N-Heterocyclic Carbene Complexes
Iannuzzi, T. E.; Gao, Y.; Baker, T. M.; Deng, L.; Neidig, M. L.
Dalton Trans. 2017, 46, 13290–13299
DOI: 10.1039/C7DT01748K
![Pccp pccp](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/pccp.jpg?itok=Fy7xMXyu)
Magnetic Circular Dichroism of UCl6− in the Ligand-to-Metal Charge-Transfer Spectral Region
Gendron, F.; Fleischauer, V. E.; Duignan, T. J.; Scott, B. L.; Löble, M. W.; Cary, S. K.; Kozimor, S. A.; Bolvin, H.; Neidig, M. L.; Autschbach, J.
Phys. Chem. Chem. Phys. 2017, 19, 17300–17313
DOI: 10.1039/C7CP02572F
![Magnetic circular dichroism studies of ironii binding to human calprotectin magnetic circular dichroism studies of ironii binding to human calprotectin](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/magnetic_circular_dichroism_studies_of_ironii_binding_to_human_calprotectin_1.jpg?itok=hZ35DBOI)
Magnetic Circular Dichroism Studies of Iron(II) Binding to Human Calprotectin
Baker, T. M.; Nakashige, T. G.; Nolan, E. M.; Neidig, M. L.
Chem. Sci. 2017, 8, 1369–1377
DOI: 10.1039/C6SC03487J
![Magnetic circular dichroism and density functional theory studies of ironii pincer complexes magnetic circular dichroism and density functional theory studies of ironii pincer complexes](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/magnetic_circular_dichroism_and_density_functional_theory_studies_of_ironii-pincer_complexes.jpeg?itok=EPfQDe7s)
Magnetic Circular Dichroism and Density Functional Theory Studies of Iron(II)-Pincer Complexes: Insight into Electronic Structure and Bonding Effects of Pincer N-Heterocyclic Carbene Moieties
Baker, T. M.; Mako, T. L.; Vasilopoulos, A.; Li, B.; Byers, J. A.; Neidig, M. L.
Organometallics 2016, 35, 3692–3700
![Resident holes and electrons at organicconductor and organicorganic interfacesan electron paramagnetic resonance investigation resident holes and electrons at organicconductor and organicorganic interfacesan electron paramagnetic resonance investigation](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/resident_holes_and_electrons_at_organicconductor_and_organicorganic_interfacesan_electron_paramagnetic_resonance_investigation.jpg?itok=g47pTi5D)
Resident Holes and Electrons at Organic/Conductor and Organic/Organic Interfaces: An Electron Paramagnetic Resonance Investigation
Zhang, C.; Daifuku, S. L.; Neidig, M. L.; Marchetti, A. P.
Org. Electron. 2016, 37, 379–385
![Catalytic light driven generation of hydrogen from water by iron dithiolene complexes catalytic light driven generation of hydrogen from water by iron dithiolene complexes](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/catalytic_light-driven_generation_of_hydrogen_from_water_by_iron_dithiolene_complexes.jpeg?itok=BO8nP7o_)
Catalytic Light-Driven Generation of Hydrogen from Water by Iron Dithiolene Complexes
Lv, H.; Ruberu, T. P. A.; Fleischauer, V. E.; Brennessel, W. W.; Neidig, M. L.; Eisenberg, R.
J. Am. Chem. Soc. 2016, 138, 11654–11663
DOI: 10.1021/jacs.6b05040
![Manipulating magneto optic properties of a chiral polymer by doping with stable organic biradicals manipulating magneto optic properties of a chiral polymer by doping with stable organic biradicals](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/manipulating_magneto-optic_properties_of_a_chiral_polymer_by_doping_with_stable_organic_biradicals_2.jpg?itok=qVib24bx)
Manipulating Magneto-Optic Properties of a Chiral Polymer by Doping with Stable Organic Biradicals
Lim, C.-K.; Cho, M. J.; Singh, A.; Li, Q.; Kim, W. J.; Jee, H. S.; Fillman, K. L.; Carpenter, S. H.; Neidig, M. L.; Baev, A.; Swihart, M. T.; Prasad, P. N.
Nano Lett. 2016, 16, 5451–5455
![Isolation characterization and reactivity of fe8me12 isolation characterization and reactivity of fe8me12](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/isolation_characterization_and_reactivity_of_fe8me12_-_.jpeg?itok=rQ9Lg6-L)
Isolation, Characterization, and Reactivity of Fe8Me12– : Kochi’s S = 1/2 Species in Iron-Catalyzed Cross-Couplings with MeMgBr and Ferric Salts
Muñoz, S. B.; Daifuku, S. L.; Brennessel, W. W.; Neidig, M. L.
J. Am. Chem. Soc. 2016, 138, 7492–7495
DOI: 10.1021/jacs.6b03760
![Mononuclear dinuclear and trinuclear iron complexes featuring a new monoanionic sns thiolate ligand mononuclear dinuclear and trinuclear iron complexes featuring a new monoanionic sns thiolate ligand](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/mononuclear_dinuclear_and_trinuclear_iron_complexes_featuring_a_new_monoanionic_sns_thiolate_ligand.jpeg?itok=i45wtHrT)
Mononuclear, Dinuclear, and Trinuclear Iron Complexes Featuring a New Monoanionic SNS Thiolate Ligand
Das, U. K.; Daifuku, S. L.; Gorelsky, S. I.; Korobkov, I.; Neidig, M. L.; Le Roy, J. J.; Murugesu, M.; Baker, R. T.
Inorg. Chem. 2016, 55, 987–997
![Electronic structure and bonding in ironii and ironi complexes bearing bisphosphine ligands of relevance to iron catalyzed c c cross coupling electronic structure and bonding in ironii and ironi complexes bearing bisphosphine ligands of relevance to iron catalyzed c c cross coupling](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/electronic_structure_and_bonding_in_ironii_and_ironi_complexes_bearing_bisphosphine_ligands_of_relevance_to_iron-catalyzed_c-c_cross-coupling.jpeg?itok=0vXAEO2P)
Electronic Structure and Bonding in Iron(II) and Iron(I) Complexes Bearing Bisphosphine Ligands of Relevance to Iron-Catalyzed C–C Cross-Coupling
Kneebone, J. L.; Fleischauer, V. E.; Daifuku, S. L.; Shaps, A. A.; Bailey, J. M.; Iannuzzi, T. E.; Neidig, M. L.
Inorg. Chem. 2016, 55, 272–282
![Chemsci chemsci](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chemsci.jpg?itok=Rt1vkndK)
Facile Hydrogen Atom Transfer to Iron(III) Imido Radical Complexes Supported by a Dianionic Pentadentate Ligand
Spasyuk, D. M.; Carpenter, S. H.; Kefalidis, C. E.; Piers, W. E.; Neidig, M. L.; Maron, L.
Chem. Sci. 2016, 7, 5939–5944
DOI: 10.1039/C6SC01433J
![Sci reports nature sci reports nature](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/sci-reports-nature.jpg?itok=vA_YTDnP)
Possible Demonstration of a Polaronic Bose-Einstein(-Mott) Condensate in UO2(+x) by Ultrafast THz Spectroscopy and Microwave Dissipation
Conradson, S. D.; Gilbertson, S. M.; Daifuku, S. L.; Kehl, J. A.; Durakiewicz, T.; Andersson, D. A.; Bishop, A. R.; Byler, D. D.; Maldonado, P.; Oppeneer, P. M.; Valdez, J. A.; Neidig, M. L.; Rodriguez, G.
Sci Rep 2015, 5, 15278
DOI: 10.1038/srep15278
![Ironii active species in iron bisphosphine catalyzed kumada and suzuki miyaura cross couplings of phenyl nucleophiles and secondary alkyl halides ironii active species in iron bisphosphine catalyzed kumada and suzuki miyaura cross couplings of phenyl nucleophiles and secondary alkyl halides](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/ironii_active_species_in_iron-bisphosphine_catalyzed_kumada_and_suzuki-miyaura_cross-couplings_of_phenyl_nucleophiles_and_secondary_alkyl_halides.jpeg?itok=CmIosPbd)
Iron(II) Active Species in Iron–Bisphosphine Catalyzed Kumada and Suzuki–Miyaura Cross-Couplings of Phenyl Nucleophiles and Secondary Alkyl Halides
Daifuku, S. L.; Kneebone, J. L.; Snyder, B. E. R.; Neidig, M. L.
J. Am. Chem. Soc. 2015, 137, 11432–11444
DOI: 10.1021/jacs.5b06648
![Linear and t shaped ironi complexes supported by n heterocyclic carbene ligands linear and t shaped ironi complexes supported by n heterocyclic carbene ligands](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/linear_and_t-shaped_ironi_complexes_supported_by_n-heterocyclic_carbene_ligands.jpeg?itok=waVvS-dW)
Linear and T-Shaped Iron(I) Complexes Supported by N-Heterocyclic Carbene Ligands: Synthesis and Structure Characterization
Ouyang, Z.; Du, J.; Wang, L.; Kneebone, J. L.; Neidig, M. L.; Deng, L.
Inorg. Chem. 2015, 54, 8808–8816
![Daltontrans daltontrans](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/daltontrans.jpg?itok=n8S7qWTc)
Ambivalent Binding between a Radical-Based Pincer Ligand and Iron
Harriman, K. L. M.; Leitch, A. A.; Stoian, S. A.; Habib, F.; Kneebone, J. L.; Gorelsky, S. I.; Korobkov, I.; Desgreniers, S.; Neidig, M. L.; Hill, S.; Murugesu, M.; Brusso, J. L.
Dalton Trans. 2015, 44, 10516–10523
DOI: 10.1039/C5DT01374G
![How innocent are potentially redox non innocent ligands how innocent are potentially redox non innocent ligands](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/how_innocent_are_potentially_redox_non-innocent_ligands.jpeg?itok=0ymUWf07)
How Innocent Are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study
Butschke, B.; Fillman, K. L.; Bendikov, T.; Shimon, L. J. W.; Diskin-Posner, Y.; Leitus, G.; Gorelsky, S. I.; Neidig, M. L.; Milstein, D.
Inorg. Chem. 2015, 54, 4909–4926
![Chemsci chemsci](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chemsci.jpg?itok=Rt1vkndK)
A Combined Magnetic Circular Dichroism and Density Functional Theory Approach for the Elucidation of Electronic Structure and Bonding in Three- and Four-Coordinate Iron(II)–N-Heterocyclic Carbene Complexes
Fillman, K. L.; Przyojski, J. A.; Al-Afyouni, M. H.; Tonzetich, Z. J.; Neidig, M. L.
Chem. Sci. 2015, 6, 1178–1188
DOI: 10.1039/C4SC02791D
![Acta cryst e acta cryst e](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/acta_cryst_e_1.jpg?itok=gHcgXJtT)
Crystal structure of a third polymorph of tris(acetylacetonato-κ2O,O')iron(III)
Baker, T.M., Howard, K.M., Brennessel, W.W., Neidig, M.L.
Acta Crystallogr. E: Crystallogr. Commun. 2015, 71, m228–m229
![Isolation and characterization of a tetramethylironiii ferrate isolation and characterization of a tetramethylironiii ferrate](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/isolation_and_characterization_of_a_tetramethylironiii_ferrate.jpeg?itok=Paf0BLgT)
Isolation and Characterization of a Tetramethyliron(III) Ferrate: An Intermediate in the Reduction Pathway of Ferric Salts with MeMgBr
Al-Afyouni, M. H.; Fillman, K. L.; Brennessel, W. W.; Neidig, M. L.
J. Am. Chem. Soc. 2014, 136, 15457–15460
DOI: 10.1021/ja5080757
![Rcs logo rcs logo](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/rcs_logo_2.jpg?itok=3CYsJMBH)
Two- and Three-Coordinate Formal Iron(I) Compounds Featuring Monodentate Aminocarbene Ligands
Mo, Z.; Ouyang, Z.; Wang, L.; Fillman, K. L.; Neidig, M. L.; Deng, L.
Org. Chem. Front. 2014, 1, 1040–1044
DOI: 10.1039/C4QO00175C
![Iron phosphine catalyzed cross coupling of tetraorganoborates and related group 13 nucleophiles with alkyl halides iron phosphine catalyzed cross coupling of tetraorganoborates and related group 13 nucleophiles with alkyl halides](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/iron_phosphine_catalyzed_cross-coupling_of_tetraorganoborates_and_related_group_13_nucleophiles_with_alkyl_halides.jpeg?itok=et3vB-HI)
Iron Phosphine Catalyzed Cross-Coupling of Tetraorganoborates and Related Group 13 Nucleophiles with Alkyl Halides
Bedford, R. B.; Brenner, P. B.; Carter, E.; Clifton, J.; Cogswell, P. M.; Gower, N. J.; Haddow, M. F.; Harvey, J. N.; Kehl, J. A.; Murphy, D. M.; Neeve, E. C.; Neidig, M. L.; Nunn, J.; Snyder, B. E. R.; Taylor, J.
Organometallics 2014, 33, 5767–5780
DOI: 10.1021/om500518r
![A combined mossbauer magnetic circular dichroism and density functional theory approach for iron cross coupling catalysis a combined mossbauer magnetic circular dichroism and density functional theory approach for iron cross coupling catalysis](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/a_combined_mossbauer_magnetic_circular_dichroism_and_density_functional_theory_approach_for_iron_cross-coupling_catalysis.jpeg?itok=KaEZEd8K)
A Combined Mössbauer, Magnetic Circular Dichroism, and Density Functional Theory Approach for Iron Cross-Coupling Catalysis: Electronic Structure, In Situ Formation, and Reactivity of Iron-Mesityl-Bisphosphines
Daifuku, S. L.; Al-Afyouni, M. H.; Snyder, B. E. R.; Kneebone, J. L.; Neidig, M. L.
J. Am. Chem. Soc. 2014, 136 (25), 9132–9143
DOI: 10.1021/ja503596m
![Flexible binding of pnp pincer ligands to monomeric iron complexes flexible binding of pnp pincer ligands to monomeric iron complexes](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/flexible_binding_of_pnp_pincer_ligands_to_monomeric_iron_complexes.jpeg?itok=A8GjesJu)
Flexible Binding of PNP Pincer Ligands to Monomeric Iron Complexes
Fillman, K. L.; Bielinski, E. A.; Schmeier, T. J.; Nesvet, J. C.; Woodruff, T. M.; Pan, C. J.; Takase, M. K.; Hazari, N.; Neidig, M. L.
Inorg. Chem. 2014, 53, 6066–6072
DOI: 10.1021/ic5004275
![Chem eur j chem eur j](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chem_eur_j.png?itok=Us2uwXpg)
Iron Dicarbonyl Complexes Featuring Bipyridine-Based PNN Pincer Ligands with Short Interpyridine C-C Bond Lengths: Innocent or Non-Innocent Ligand?
Zell, T.; Milko, P.; Fillman, K. L.; Diskin-Posner, Y.; Bendikov, T.; Iron, M. A.; Leitus, G.; Ben-David, Y.; Neidig, M. L.; Milstein, D.
Chem. Eur. J. 2014, 20, 4403–4413
![Reactivity of nhc2fex2 complexes toward arylborane lewis acids and arylboronates reactivity of nhc2fex2 complexes toward arylborane lewis acids and arylboronates](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/reactivity_of_nhc2fex2_complexes_toward_arylborane_lewis_acids_and_arylboronates.jpeg?itok=EsKTxhLo)
Reactivity of (NHC)2FeX2 Complexes toward Arylborane Lewis Acids and Arylboronates
Dunsford, J. J.; Cade, I. A.; Fillman, K. L.; Neidig, M. L.; Ingleson, M. J.
Organometallics 2014, 33, 370–377
DOI: 10.1021/om401105k
![Direct observation of ict cations at the htltransparent semiconductor interface direct observation of ict cations at the htltransparent semiconductor interface](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/direct_observation_of_ict_cations_at_the_htltransparent_semiconductor_interface.jpg?itok=YTAL6yLi)
Direct Observation of ICT Cations at the HTL/Transparent Semiconductor Interface
Daifuku, S. L.; Favaro, C.; Marchetti, A. P.; Neidig, M. L.
Org. Chem. Front. 2014, 15, 3761–3765
![Chem eur j chem eur j](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/chem_eur_j.png?itok=Us2uwXpg)
Efficient Nazarov Cyclization/Wagner-Meerwein Rearrangement Terminated by a CuII-Promoted Oxidation: Synthesis of 4-Alkylidene Cyclopentenones
Lebœuf, D.; Theiste, E.; Gandon, V.; Daifuku, S. L.; Neidig, M. L.; Frontier, A. J.
Chem. Eur. J. 2013, 19, 4842–4848
![Coord chem rev coord chem rev](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/coord_chem_rev.jpg?itok=D23rCG1U)
Covalency in F-Element Complexes
Neidig, M. L.; Clark, D. L.; Martin, R. L.
Coord. Chem. Rev. 2013, 394–406
![F7busk5xqaai au f7busk5xqaai au](https://theneidiglab.web.ox.ac.uk/sites/default/files/styles/mt_image_medium/public/theneidiglab/images/media/f7busk5xqaai-au_0.jpeg?itok=xqz0hlg2)
Covalency in F-Element Complexes
Neidig, M. L.; Clark, D. L.; Martin, R. L.
Coord. Chem. Rev. 2013, 394–406
DOI: 10.1016/j.ccr.2012.04.029